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FREE V I B R A T I O N  OF A ROTATING 
BEAM-CONNECTED SPACE STATION* 

SUMMARY 

The free vibration of a rotating beam-connected space station is 
analyzed with a mathematical model of the space station which represents the 
general three-dimensional motion of the various components of the system. 
The space station is composed of two space modules connected by a flexible 
beam, and the system is caused to spin in the plane of its orbit  in order  to 
produce an artificial gravity environment within the space modules. 

The kinetic energy and potential energy of the space station are used to 
develop a Lagrangian function of the system. Hamilton's principle is used to 
determine a set of governing equations, and a set of boundary conditions repre- 
senting a clamped-clamped attachment of the beam to each space module is 
applied to the ends of the beam. 
the motion of the space station is shown to be uncoupled into two separate 
types of motion, one in the plane of rotation and the other perpendicular to 
the plane of rotation. 

Within the l imits of small  deflection theory, 

An exact solution is obtained for  the beam deflection in the plane of 
The application of the nonhomogeneous boundary conditions leads rotation. 

to a set of simultaneous equations in the frequency p2, from which a charac- 
terist ic determinant is developed. 
characterist ic determinant is programmed for digital solution on the IBM 7094. 

A procedure to solve fo r  the zeros  of the 

Results of the analysis for  a given space station design are presented 
in the form of tables showing the natural frequencies of free vibration of the 
space station for  various spin rates. The effect of the spin rate is shown to 
be an ttapparent" increase in the stiffness of the beam. Mode shapes showing 
the normalized bending deflection of the beam in its six lowest modes of 
vibration are presented. By analysis of five special cases  of negative values 
of p2, the existence of two rigid body modes with nonzero values of p2 is 
demonstrated; and it is shown that the configuration studied has  no instabilities 
for motion in the plane of the orbit .  

:: The information presented herein was  included in a dissertation 
entitled, "Free Vibration of a Rotating Beam-Connected Space Station" sub- 
mitted in partial  fulfillment of the requirements for the degree of Doctor of 
Philosophy in Engineering Mechanics , Virginia Polytechnic Institute, Blacksburg, 
Virginia, June 1968. 



SECTION 1. INTRODUCTION 

The problem of determining the natural frequencies of the free vibra- 
tion of a rotating, beam-connected space station is considered by developing a 
mathematical model of the system which represents  the general three- 
dimensional motion of the various components of the space station. 
figuration studied is composed of two space modules connected by a flexible 
beam where the system is made to spin in the plane of its orbit  in order  to 
produce an artificial gravity environment within the space modules. 
orbital configuration of the space station is shown in Figure I. 

The con- 

The 

FIGURE 1. ORBITAL CONFIGURATION OF THE SPACE STATION 

The kinetic energy and potential energy of the space station are 
formulated in t e rms  of a set of generalized coordinates, and a Lagrangian 
function is developed for  the system. Hamilton’s principle is applied to 
determine the governing equations for the motion of the rotating space station. 
Boundary conditions representing the clamped-clamped attachment of the beam 
to each space module a r e  applied to the ends of the beam. Thus the mixed 
problem of a continuous beam with two large end masses  is reduced to the 
problem of a continuous beam with nonhomogeneous boundary conditions. 

2 
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The vibration of the space station is considered to be limited to small  angular 
and l inear displacements f rom the motion corresponding to steady rotation as 
a rigid body. 
motion of the space station in the plane of rotation is shown to be uncoupled 
from the motion of the space station out of the plane of rotation. 

Within the l imits of this small  deflection approximation, the 

An exact solution is obtained for  the beam deflection in  the plane of 
rotation. 
and a characterist ic determinant is developed. In addition, the behavior of 
the characterist ic determinant as the frequency parameter takes on negative 
values is investigated with five special cases  in which the form of the exact 
solution for the beam deflection is modified. 

This solution is substituted into the appropriate boundary equations , 

A procedure to solve fo r  the zeros  of the characterist ic determinant is 
programmed for  digital solution on the IBM 7094. 
analysis fo r  a given space station configuration are presented in Appendix C. 

Numerical results of the 

SECTION 1 1 .  REVIEW OF THE LITERATURE 

During'the last decade a considerable amount of emphasis has been 
placed upon creating an artificial gravity environment within a rotating space 
station. Suddath [ 13 , Kurzhals and Keckler [ 21 , Krause  [3]  , Polstorff [4] , 
and others have studied various single body problems, while such authors as 
Chobotov [ 51 , Fowler [ 61 , Pengelley [ 71, Tai and Loh [ 81 , and Targoff [ 91 
have discussed the problem of rotation of cable-connected space stations. 

The concept of compression-member-connec ted compartments has been 
examined by Tai, Andrew, Loh, and Kamrath [ I O ]  in a paper in which the 
stability and response of 13 rotating space station configurations w a s  investi- 
gated. 
ments, multiple-cable-connected compartments, and compartments connected 
by compression members  to a central  hub. 

The configurations studied included single-cable-connected compart- 

A recent paper by Liu [ 111 presents an analysis of two cable-connected 
By using a space stations rotating about an axis normal to their  orbital plane. 

concept of concentrated fictitious masses  and a Galerkin approach, a solution 
w a s  obtained for  the free vibration of the rotating system. 

3 



SECTION I 1 1 .  DEVELOPMENT OF THE MATHEMATICAL MODEL 

Motion of the Stages 

In order  to study the motion of the rotating space station, the motion of 
each of the two stages of the station is described independently. The position 
of the center of m a s s  of the ith stage at any time is given by 

- - - - 
R. = x.1 + y.J + z.K ( i  = 1,2) 

1 1 1 .I 

as shown in Figure 2 .  
translation components such that 

The motion of each stage is considered to have three 

d 0 -  r - C  . +  
R. = x.1 + y.J + 2.K , ( i  = i , 2 )  

1 I 1 1 

- 1 -  

eli,  .ali AI@ B o d y -  F ~ i a d  Pr incipal  Anas - 
'3; 

FIGURE 2. POSITION OF THE ith STAGE 

The rotational motion of each stage is represented by the vector sum of 
five independent angular velocities shown in Figure 3. 

4 
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FIGURE 3. ROTATIONAL MOTION OF THE ith STAGE 
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where 8 represents the rate of change of the attitude angle of the space station 
in the plane of the orbit, $ represents the rate of change of the elevation angle 
of the space station from the plane of the orbit, b .  is the rate of pitch of the 

ith stage about its center of mass,  6. is the rate of yaw of the ith stage about 

its center of mass ,  and $. is the rate of roll of tbe ith stage about its center 

of mass .  Transformations from each of the five sets  of axes to inertia space 
axes a r e  given by 

1 

1 

1 

i 

- 
i 

--L 

k 
. .  

< e 

e 
rl - 

e 
P 

( i  = 1 , 2 )  

6 



[Tal 

where 

[TI1 = O Y  0 

cose sin0 

-sine cos0 

( i  = 1,2) 

( i  = 1,2)  

cos$ sin+ 0 

-sin$ cos$ 0 

sin@ i y  i 0 y cosp 

0 -sin@ cos@ - i y  i- 

( i  = 1,2) 
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= 

and 

COSYi Y 0 , - shy i  

, (cosOsin$) , (sinesin$) 

, (COS~?COS$) , (sinOcos$) 

, ( -sin0 ) , ( cos0 ) - 

( i  = 1,2) 

( i  = 1,2) 

- 
, D  ...... 

( -sin$cosp.) 1 , (cosecos$cosp i - sinesinpi) 

( sin$sinpi) 

, . . . . . . . 
, . . . . . . . , ( -cos0cos$sinp i - sinecospi) 

. . . . , (sine sin$) 

. . . . , ( sinecos$cospi + cosOsinpi) 

. . . . , ( -sin0cos$sir@ + cos0cosp.) i 1 - 
( i  = 1,2) 

8 



- 
(cos@osa. - sin@osp.sina.) 

1 1 1  

.... ) c o s e s i n ~ o s a .  + cosecos@ospisinai 

-s in0 si@ . sina. 

-cosOsin$sina. + cosOcos+osp.cosa. 

-sinesinp.cosa. 

1 

1 1  

.... 
1 1 ( 1 1 

.... ( -cosecos$sinpi - sinecospi) 

. . . . .  sinesin+cosa. + sinecos+cosP.sina. 9 1 1 

+ cos8sinP .sina. 

-s in8 sin +s ina. + s in8 cos qcosp . 
1 1  

1 1 

...., + cosesinPicosai 

.... (-sinecos+sir$. + cosecosp.) 
1 1 

- 
( i  = i y 2 )  

- 
y ....... 
, ....... 
y ....... 

, ....... 

, ....... 
y ....... 

- 

9 



- 
- ( ~ ~ s $ c o s a . c o s y  - sin$cosp.sina.cosy - sin$siSs.sinr.), * 

1 i 1 1  i 1 1  

( -cos$sina. - sin$cosP.cosai) > a '  
1 1 

( cos$cosa.sinyi - sin$cosp.sina.shy. + sin$si@.cosy.) *. a 
1 1 1 1  1 1 

. . cosesin$cosa.cosy. + cos0cos$cosp.sina.cosy 
1 1 1 1  i 

-sinesi@ .sina.cosy. + cosecos$sinp . s h y  

+sinOcosp . s h y  

-cosesin$sina. + cosOcos$cosp .cosa. 

-sine si@. COS@. 

I... 1 1  1 i i  

i i  

, . * .  
1 1 

1 1 

i 
+ cosecos@osp.sina.sinY. 

l)). . 

1 1  

-sin8sinp.sincyisinyi - cosecos$sinp.cosy 
1 1 i 

-sinOcosp .cosy 
1 i 

. . . sinesin$cosa.cosy. + sinecos$cosp.sina.cosy 

+ cos0 sir@ .sina. cosy. + sinecos $sir@ .siny 
1 1  1 i i  

- cosecosp.sinyi 

- s in0 sin $s ina. + s in0 cos $cosp. co sa. 

1 1 1  1 

1 

1 1 

.cosa. 
1 1 

( 
+ sinecos$cosp.sina.siny 

1 1  

+cosesinp.sinaisinyi - sinecos$sinp .cosy 
1 1 i 

( i  = 1,2) 

The components of the angular velocity about a se t  of body-fixed principal axes 
of each stage (e  

. - ) d e  , e ) a r e  determined from 
i 3i 1 * e2 

i 
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4 e 4  * -  . 4  . 4  . 4  4 e 4 

w = 8 1 +  + k + p . e  + a . e  +yies  = w e + w  e + W  e 
i 1-t 1 c  i i ii li 2i 2i 3i 3i 

( i  = i , 2 )  ( 4) 

- 4 +  - 4 4 4 

Using the transformation equations to w r i t e  k, e e e , e , e , e in 

terms of the inertia space axes I, J, K, w e  solve equation (4) to obtain 

5 ’  ciy si ii 3i 
- 4  4 

w = i, ( cos+cosaicosy - sin+cosB .sinaicosy - sin+sinPisinyi) 
1 i 1 i 

i 
i +$J ( s id i s imicosy i  - cosP.siny.) + ~ . C O S ~ ~ C O S Y ~  - d! i ~ i ~ ~  

1 1  1 

( 5) ( i  = 1,2)  

w = -i(sin+cosp.cosy. + cos+sina.) + $sigicosai  - j is ina.  + $ 
2 1 1 1 1 i i 

( i  = 1 ,2 )  ( 6 )  

w = i,(sin+sinp.cosy - sin+cosp.sina.siny. + cos+cosa.siny.) 
1 1  1 1 1  1 i i 

+$J (cosp.cosy. + siW.sina.siny.) + b.cosa.sinyi + &cosy 
1 1 1 1 1  1 1 1 i 

3 

( i  = 1 , 2 )  ( 7) 

Configuration of the Space Station 

The position of the space station at a given time is shown in Figure 4, 
where the origin of the inertia space axes is fixed at the center of the earth. 
Points i and 2 represent the centers of mass  of the stages while points l?l and 
P2 represent the ends of the beam connecting the two stations. Vector dl is 
the directed distance from the center of mass  of Stage i to the connection point 
of the beam and vector 
Stage 2 to the point where the beam is connected to Stage 2. 
e 

Stage 2. 
we have 

is the directed distance from the center  of mass  of 
The unit vector 

4 

is along the line from the center of mass  of Stage i to the center of mass  of 
17 

The unit vector 2 is along the line drawn f rom PI to P2. Thus 
PIP2 



& I ,  -+ 
= R1 + dl = (xi - dlcos$sincrl - dlsin$cos& Cosal) I 

p i  
+ y1 - dlcosOsin$sinal+ dicosOcos$cosPlcoscvl J >- - disinOsi@ ~ c o s ~ ~ !  1 ( 

zi - dlsinkIsin$sina!l+ dlsinOcos$cospicosa!i 

+ dlcosOsinpIcosal 

4 -  + R' = R2 + d2 = (x2,+ d2cos$sinq + d2sin$cosp2cos~1!2) I 

+ d2cosOsin$sincr2 - d ~ c o s O c o s $ c o s ~ ~ c o s a ~  

d2sinOsinp2cosa2 

+ d2sinOsin$sina2 - d ~ ~ i n O c o s $ c o s ~ ~ c o s ~ ~ ! ~  

p2 

d2cosOsi@2 c0sa2 

- + + -  * + + 
d12 = dI2e = R2 - Rl = (x2 - xi) I + (y2 - yl) J + ( z2  - zl) K 

7 

4 + + d  4 

d = d  e = R' - R' = dl2+d2 - d l  
PIP2 P1P2 PIP2 P2 PI 

x2 - x i  + d2cosJlsina2 + d2sin$cosp2cosor2 I 

+ dlcosJlsinal + dlsinJlcos/3lcosq > -  
+/y2 - y1 + d2cosOsin$sin~1!~ - d 2 ~ ~ s e ~ ~ s $ ~ ~ ~ p 2 ~ ~ ~ ~ 2  J \- 

I + d2sinOsin@2cos~2 + dlcosOsin$sinal 

- dlcosOcos$cosplcosal + dlsinOsin@Icosal 

z2 - zi + d2sinOsin$sin% - d2sinOcos$cosp~cosa~ 

- d2cosOsinp2cos~ + dlsinOsin$sinal 

- dlsinOcos$cosplcosal - dlcosOsinplcoscrl 

12  



J 
I 

The un 

FIGURE 4. POSITION OF THE SPACE STATION 

--t - 
t vectors (2 e , e ) describe the beam orientat .on. 

v' PlP2 w 
Vector 2 lies in the plane of the orbit and defines the direction of the beam 

deflection w( r, t) , while vector e is orthogonal to 2 and 2 and 
d 

W 

V PIP2 W 

defines the direction of the beam deflection v( r, t) out of the orbit  plane. 
These vectors are derived in Appendix A ,  from which we  w r i t e  

- 
e = I  
V - 

J 
-3 x2 - xl + d2cos+sin% + d2sin+cosP2cos~ 

+ dlcos+sinal + dlsin+cosPlcosal 

y2 - yl + d2cosOsin+sina2 - dzcosOcos+cosP2cosa~ 

+ d2sinOsiI$2cosq + dlqosOsin+sinal 

- dlcosO cos+cos@lcosal + dlsinO sidicosa1 

1 -  
- 

- - 

- 

13 



-"[ x2 - x i  + d2cos$sinq + 
+ dicos$sinai + disin$cospicosai 

li - zi + d2sinOsin$sin% - d2s inOcos$cos~~cosa~ 

d2cosOsinp2cosa2 + disinOsin$sinai 

disinOcos$cosp lcosai - diposesinp lcosai 

x2 - xi + d2cos$sina2 + 4 e - - "L 
PIP2 

+ dicos$sinai + disin$cospicosai 

4 

- yi + d2cosOsin$sing - d ~ c o s O c o s $ c o d ~ ~ o ~ ~  

d2sin0 silg2cosa2 + dlcosOsin+sinai 

dicosO cos$codi cosai + dlsine s i d i c o s a i  I 
- zi + d2sinOsin$sina2 - d2sinOcos$cosp~cosa~ 

L 1 
I I - d2cosOsinP2 c0sa2 + dlsinO sin$sinai 

J dlsinO cos$cosPicosai - dicose si$icosaI 

4 

- zi + d2sinOsin$sina2 - d 2 s i n O c o s $ c o s P ~ ~ ~ ~ q  1 - d 2 c o s O s i ~ ~ c o s a 2  + disinOsin$sinai 

- dlsinOcos$cosPicosal - dicosOsWicosai 

W 

- yi + d2cosOsin$sina2 - d 2 c o s O c o s $ c o s ~ ~ c o s ~  1 d2sin0 sir$ 2cosa2 + dicosO s in$s inai 

- dicosOcos$cosplcosal + dIsinOsi@icosq 

14 



Motion of the Beam 

The position of a point on the beam at any time is given by 

V R- (r,t)  = R - l + d l + r e  + w ( r , t ) e  + v ( r , t ) e  
C PlP2 W 

where r is the position along the beam longitudinal axes measured from PI, 
w( r, t) is the deflection of the beam in the direction of 2 measured from 

the vector , v(  r, t) is the deflection of the beam in the direction of 2 PIP2 V 

measured from the vector < 
article,  we w r i t e  

W 

. Using the vector identities of the previous 
PIP2 

- + 
-cos$sinal - sin$co@Icosai) I 

- xi + d2cos$sina2 + 
dlcos$sinal + dlsin$co@icosq 

C 

-cosOsin$sinal + 
-sin0 sir@lcosal 

- y, + d2cos0sin$sina2 - d ~ c o s 0 c o s $ ~ o ~ ~ ~ ~ ~ ~ a ~  

d2sin0sir@2cosa2 + dlcosOsin$sinal 

- dlcos0 COS$COS~ 1COSa1 + dish0  sir@ icosai - 

z2 - z1 + d2sin0 sinQsina2 - d2sin0 

- d2cos0siqB2cosa2 + dlsinOsin$sinal 

- dlsinOcos$cosplcosal - dlcosOsir@lcosal 

-c 

J 
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- 
x2 - x1 + d2cos+sina2 + d2sin+cosp2cosa2 

+ dlcos+sinal + disin+cosplcosai I . .  

- yi + d2cosesin+sina2 - d ~ c o s ~ c o s + c o s ~ ~ c o s c ~ ~  

d2sinesinp2cosa2 + d1cosesin+sinq 1 - dlcose cos+cosplcosal + dlsinesinplcosq 

-sinesin+sinal + sinecos+cosplcosal 

cos0 sin/31cosal 

1 r -zi + d2sin8sin+sina2 - d2sin~cos+cosp~cosa2 

d2cosesinp2cosa2 + dlsinOsin+sinal 

J L- dlsinecos+cosplcosal - dlcosesinplcosal 

+ d2sinesid2 c0sa2 + dlcosesin+sinai 

- dicosOcos$cos~~cosal + dlsinesinPi c o s q  

- x1 + d 2 c o s + s i n ~  + d2sin+cosp2cosa2 1 dlcos+sinal + dlsin$cosP1coscq 

ii 

z2 - z1 + d2sinesin+sina2 - d 2 s i n ~ c o s ~ c o s p 2 c o s a ~  

- d2cos8si&2cosa2 + dlsinesin+sinal 

- dlsin0cos+cospl c o s q  - dlcosesinpl c o s q  

Using small motion approximations f o r  +, pi, &, ai ,  a2, v, w and neglecting 

third order and higher terms,  the position vector R ( r ,  t) becomes 

- 
/ 

4 

C 

\ [ 

16 



-* 

J 

-* 

K - -PI 1 2  - ;ai 1 2  - $ai)(l - :) 
-P2 1 2  - ;a2 1 2  - $,>: + di2sin0- 

1 

L 

2 

2 

os0 (1 - :) - d2Pzcos0 - r 
L 

d12 - dl - d2)cose + (dip, + d2P2)sine 

-$(dl2 - di - d2) + (dial + dp2) (dl2 - dl - d2) sin0 

17 



Thus the vector velocity of a point on the beam is 

(d12 - d, - d2);cos8 + di2sin0 + (dlPl + d2p2);sinO 

- ( d i i  + d&) cos0 I 
. [-( d,, - d, - d2) ;sin0 + d,2cosf3] 

-- V [ -di2+ - 4 ( dI2 - di - d2) + (dl61 + &&)I 
L2 

18 



I .  
z1 + dlsine( -& - P i j l  - $& - ~ ~ $ 1  

1 2  1 2  
- -p 2 - - 2 Q 1  - $al) (1 - $) 

- d2sine( -$$ - Pa2 -  CY^&^ - $i2 - a2$) L 

L 

d$1 + d2p2) ecos0 + (d&l + d2& sin0 1 - di - d2)6sin0 + d12cose 

1 dl - d2) cos0 + ( dipl + d2p2) sine 

I ’  [( d:2 - dl - d2) k o s e  + di2sinQ 

19 



Constraint Equation for the Configuration 

The vector f rom the center of mass  of Stage I to the center of mass of 
Stage 2 has been previously identified as 32. Consider the plane formed by 3 2  
and as shown in Figure 5. 

FIGURE 5. THE PLANE FORMED BY T2, SHOWING THE PROJECTED 
LENGTHS OF THE CONFIGURATION 

- 
a ,  where 

The angle between the beam longitudinal axis and the plane of q2, is 

20 



so the projection of the beam onto the q 2 ,  c p l a n e  is L c o s z .  
the deflected length of the beam. 

L represents D D 

Similarly, the angle formed by the line of length 
drawn between points 1 and 2 is B, where 

- - dlcosqsinpl + d2c0sa~sir@~ si@ p = 
L COSE D 

N 
r Y 

(neglecting higher order  te rms)  

Thus we have 

r 

L 

L cosa! with the line D .  

N dlpi + dfi2 

- + d r  + d2(I - -$ i - 

2 o  

which is the constraint equation of the configuration. 

21 



Kinetic Energy of the Space Station 

The total kinetic energy of the space station is composed of the kinetic 
energies of Stages I and 2 plus the kinetic energy of the beam. Therefore, 

L .  
t L  1 d d z d r  

C 2 o  

4 A 

where R, and R2 are given in equation (2)  

w , w , w are given in equations ( 5 ) ,  ( 6 )  and (7)  
ii 2i 3i 

+ 
R is given in equation ( i o )  . 

C 

Potential Energy of the Space Station 

For  an orbiting space station the gravity field of the ear th  is associated 
with the centripetal acceleration of the mass center of the space station in its 
rotation about the center of the earth. We wish to  study only the motion of the 
space station superimposed on the translation of i t s  center of mass and neglect 
the small effect of the gravity gradient, 
tial energy of the space station is the internal bending energy of the connecting 
beam, written as 

Therefore, we consider that the poten- 

L L 
U = E I w ( 3 ) 2  d r  + 2 { E1 v (e)2 a r  d r  

and for  the beam used in the analysis I = I = I. 
w v  

22 



SECTION IV. DERIVATION OF THE GOVERNING EQUATIONS 

Development of the Lagrangian Function 

We now have the kinetic energy and potential energy of the space station 
given in equations (12) and (13) .  We write the Lagrangian K = T - V to obtain 

- - I E I ( z )  a h  2 dr - [EI($) dr 2 2 o  
. (14) 

Ha mil ton's Principle 

By application of Hamilton's Principle in accordance with The Calculus of 
Variations we obtain, after substituting the constraint equation and neglecting 
second order terms, 

6 p Kdt = 0 
tl 
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+ - + LZ) 

FdtF I + Tdg I + -L2F 1- - LyidisinO + -yid2sin6 I .. 
3 2 2 

- i;wsim - diw(f - I)] dr 
0 

1 

dB dt 

25 



-mI 

- Ld2z62(J, + e) 3 

+s '  
ti 

26 

wdr 
0 



+ s"' 
ti 

- . 2  I -. I I 
MBd2L0 + -mLd2LB2+ 3 gmLd1d2b2 - ,mLdib2 

.. L 
I - -mLdidz62pi - m J' (-rw - dii2w) dr - 6 L o  



t + s  
ti 

28 

- [Mgd,Li2 + p L d i L 0 2  I --  - --mLdid2i2 1 + N 

3 

.. i *. I -. i 
3 2 

- - m M i q  + -mMixi - 

- m M i ( i d i  4 ;L)($ + ai) i2 

- m? [ [(r - L); +die% + rb2v dr  1 

L 
+ m %  Jvdr 

L o  



- m 1 (fi + dib2v + r6%) dr 
- L o  

+ [ E I $ 6 ( F J  
ti 

ti I 

r = O  dt 

L 

.. 
- m(w - wi2)  

29 
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.. r + m$(di + r) - mdl& (: - L) - md2cr2 - L 

- me2(- + +  %ai + (dl  + r ) . -  E 1 3  a %  

L 

r = O  
dt  

Now we note that xi, y1, zi a r e  independ t generalj 

dvdrdt 

ed coordinates , 
so we have three equations associated with the coordinates, wri t ten as 

m M  - a2 + +  ----ai - 
[ MBL + mL(di + iL)] .. .. .. 

2MT 2MT 
xi = 

MT 

L 
- * $vdr 

MT 0 

N 

MBL Lesine 
.. 
Yi  = 

16) 

L 
(wi2sin6 - wi'cose - 2wbcosO - wsine) d r  m - -  

MT 0 

30 



.. 
+ ( L  + 2d1)B sin0 + (d2p2 - dlP1) i2sin6 

- (d2P2 - dlb1);cose + ( d l i l  - d i i 2 )  sin6 

+ 2(dl& - d2ij2) icose 

N N 

M L  
b2sine - - ecose .. MBL zi = - 

MT MT 

L m - J(-wb2cos0 - wesine - 2wbsine + wcos0) d r  
MT 0 

.. 
( L  + 2d1) b2sin0 - ( L + 2d1) 0cos0 - ( d2p2 - dlpi)  

- (d2p2 - dlpi)esinO - (d,&’i - d2b2) cos0 +“L + 2(di&, - d,&,) isin0 

(18)  
Combining equations ( 17) and ( 18) , we may write 

r -  
mL .. 

( L +  2di) 0 - - (d2P2 - diS1)b2 1 2MT 

.. .. 
zlcosO - ylsinO = - 

L mL -. m 

2MT MT 0 
- (d lP1 - d 2 j 2 )  +- J’ (we2 - w) d r  



and 

@ P i  - d 2 P 2 ) i  
.. .. 
zisin€J + yicose :e - 

L .. .. m . .  m L  + -  (dibl - d2P2)0 +- s (we + 2we) dr  
MT M* 0 

We also have 8 ,  $, yi, y 2  as independent generalized coordinates with 
associated equations given by 

+ ( I A ) I  + (IB)l + mL 

.. 
+ [ M 

+ imL( L + 2di) - yisine) 
B 2  

.. L 

0 

.. 
- [ -$L(dipi - d2p2) + m + zlsine) + m s (d, + r) wdr 

32 



.. 

.. 
( $  + q ) - d2( $ + a2 ) ]  - m (yicosO + zlsin0) 

0 

.. . L 
+ s m ( d l  + r) (v  + 0%) d r  = 0 

(22)  
0 

Boundary Conditions of the Beam 

The boundary conditions represent a fixed attachment point at each end 
of the beam. 
to be consistent with the motion of the respective stages. 
these boundary conditions is shown in Appendix B, f rom which w e  w r i t e  

That is, the beam deflection and slope at each end are considered 
The derivation of 

1 

L 
P I  = [ -d ,w, i (L , t )  + ( L + d 2 )  w,l (O,t )  ] (25) 
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The Governing Equations 

By substituting equations (16) , ( 19) , (20) , (25) , (26) , (27) , (28) 
into equations (21)  , (22) , (23) , (24) and the remaining terms in equation 
(15) and by neglecting second order  terms, w e  obtain a set of six independent 
coordinates ( 0 ,  $, y l ,  y 2 ,  w, v) which yield six governing equations and eight 
associated boundary conditions. The equations are shown below as 

.. N .. L .. L 
C,B + C2w,1 ( 0 , t )  + C",W,, ( L , t )  + wdr + m J rwdr  = 0 

0 0 

34 



L N L L 

0 0 0 
- m  s & d r  - C,i2 f v d r  - m i 2  J rvdr  = 0 

c 7 ( L  + d 4 ; , i  (0 ,  t) + c5& = 0 +c&+ = % , , ( L , t )  N - N 

L L 

C,( L + d,) * + c* e $ +  (0,  t) - N ev, i  ( L ,  t )  + c,B2y2 = o 
L L 

L 1 wdr m2 
mw + E I W , ~ ~ ~ ~  - me w - C2482w,ii + - 1 wdr - - 

L .. ' 2  - m% 2 

MT 0 MT 0 

+ (c" ,+mr)b '  - ;[C2,JL+d2) + --L2 m2Ld d 

L 2MT 

35 



+ mdlr  v,i (0 ,  t) [C20( L + d2) + m2Ldid2 I - ( e7 + mr) b2$  - 
2MT 

N 

L 

( L + d i )  - (L , t ) -%(E7  + m r )  b % , i ( O , t )  
L" 

m2Ld2 

L 2MT 

and w ( 0 , t )  = 0 ( 35) 

W ( L , t )  = 0 ( 3 6 )  

.. 
EIw, (0 ,  t) + Dl8 + D2W, 1 ( 0 ,  t) + D3%, 1 ( L ,  t) + D,e%, 1 ( 0 ,  t) 

.. L L 
wdr + Di4 s wdr - N s r w d r  = 0 

. L  
+ Di2e2w, ( L ,  t) + Di302 

0 0 L O  

v ( 0 , t )  = 0 

v ( L , t )  = 0 

( 39) 
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rv 
where the CIS, CIS and D's are combinations of physical constants given 
below 

Cl = M L + -mL(L + 2d1) 
B 2 

C2 = M E L  + (IA)l + (IB)l + mL(di + y L 2  I + dlL) B 

I I 
2 6 

C3 = + mLdi(  -dl + -L) 

37 



I I 
2 3 C4 = (IB)i - mLd2 ( -di + -L) 

I I mLdlCL 
2 3 Clo = ( I A ) 3  + -mLdl(di + -L) - 

2MT 

I I m Ld2C 
CI1 = - m u 2 (  -dl + -L) + . 

2 3 2MT 

c12 = - +-I 
CI3 = d i p B ( l  +%) + i m L  (2 +%)I 

I 
C14 = dl(MB + ZmL) L 

I 
Cl7 = ( IA) l  + ZmLd: 

1 
c ~ 8  = gmLdid2 

38 



1 Cis = gmLdl(di + L) 

C2i = [ MB (I +%) + imd2] d2 

C22 = [ MBE + mL(:dl + iL)] d2 (1 + %) 
C23 = (IB)l + FmLdg 1 

C25 = md2 - + - L 

C Z 7  = (IA),  + FmLd1 I (dl + i L )  

39 



N 

C33 = M L + mL 
B 

ci N = c2 - c,2 
MT 

N C3( L + dz) - CimLdL c4d, 
N 

( L  + 2d2) - 
L 

N 
c2 = 

L 2MTE 

C,( L + di) 
( L  + 2di) + N 

- -C3d2 + CimLd2 
c3 = 

L 2MTE L 

+ mLCi (di - d2) 
2MT 

N mLdiCl c, = -c3 + (LA), + 
2MT 

N mLd2CL 
C6 = -C4 + (IB)2 - 

2MT 

22% N 

C7 = mdi - 
MT 

40 



N m2L2d,dL 

4MT 
cg = c18 - 

N C,Cu m2L2df - - c15 - c19 
4MT 

CIO = 
MT 

N c c  m2L2did2 c,i = - + - c16 - c18 
MT QMT 

Ci2 N = mdl [+-- - + 

N CICZt m2L2dg - - c22 + c24 

MT 4MT 
c14 = 

N mLd,C, 
- c27 

2MT 
c15 = 

N mMICL 
- c29 

2MT 
c16 = 

N m2L2d; 
- c28 

4MT 
c i 7  = 

41 



N mM2CI 
+ c30 

2MT 
ci9 = 

N mLd2CL 
+ c32 

2MT 
c20 = 

N m2L2d; 
- c3i 

4MT 
(321 = 

N a - ~ 2 2  - ~ 3 2  

MT 
c22 = 

N 

c24 = c33 - 

42 
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SECTION V. SOLUTION OF THE GOVERNING EQUATIONS FOR 
THE MOTION OF THE SPACE STATION IN THE PLANE OF ROTATION 

T h e  Uncoup led  Motion of t h e  Space Sta t ion  

The governing equations derived in the preceding chapter are seen to 
be uncoupled into two types of motion. Equations (29) and ( 3 3 )  represent the 

44 



in-plane motion of the station with boundary conditions given by equations (35) 
through (38) . Equations (30) , (31 )  , (32)  , (34) describe the out-of-plane 
motion of the station with associated boundary conditions given by equations 
(39) through ( 4 2 ) .  
independently f rom the out-of-plane motion and determine a solution for  the 
bending motion of the beam in the plane of rotation. 

We may now treat the in-plane motion of the space station 

The Beam Deflection Equation 

We assume that 8 ,  the angle of rotation of the space station in the 
plane of the orbit ,  is given by 

where 
dependent perturbation of 8.  

is a constant and T ( t )  is a small  quantity representing the time 
Then the time derivatives are 

i, = a + ;(t) 
.. 
8 = Y ( t )  

Substituting the above identities into equations (24) , (33 )  , (35)  through (38 )  
and neglecting nonlinear te rms ,  w e  obtain 

- L  L .. - .. - .. N 

C17 + C2w, (0 ,  t) + C3w, (L ,  t) + C7 Jwdr  + m rwdr = 0 

( 43) 
0 0 
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L m2 L.. 
s w d r  - - s w d r  mw + EIW, iiii - ma2w - ~ 2 4 ~ % ,  i i +  - m2Q2 N .. 

MT 0 MT 0 

L ( 44) 

w ( 0 , t )  = 0 (45) 

w ( L , t )  = 0 ( 46) 

EIw, ii (L ,  t) + D8? - D3w, ( 0 ,  t) + Diow, ( L ,  t) - D,Q%, ( 0 ,  t) 

L L L 
+ D12Q2w, ( L ,  t) + Di3Q2 wdr + Di4 s wdr - N s rwdr  = 0 

(48) 
0 0 L O  
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By solving equation (43) for 7 and substituting into equation (44) , we have the 
governing equation of the beam deflection in the plane of rotation, given by 

L 
m202 J wdr mw+ EIW, iill  - m d w  - c24a2w, i 1 +  - 
MT 0 

.. N 

L N 

- [e + - - ( C 7 + m r )  m -  J r w d r  
N 

Cl 0 

m2Ldld2 + md r 
+ 

N 

2MTL 

With the assumption w( r, t) = q(  t) R( r) , the governing equation 
becomes 

47 



m2Ldz xl'GRt c c  (L) 
( L  + di) + C d  -=- w N . _  

L 2M,L ci I 

Dividing by 77 and rearranging terms, we  w r i t e  

m2Ldid2 + % ( L + d 2 )  N + N 

L 2MTL 
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1- [ -  + 

L 
- -  - m2n2 J ' R ( r ) d r  

MT 0 

ip t 
We now assume q (  t) = q e 

= -p2q( t) . 
and take two time derivatives to obtain 

0 
2 iPt .. 

q( t) = -p qoe 

dependence from the governing equation and w r i t e  

Substituting this value, w e  remove the time 

N 

EIRN(r)  - CZ4Q2Rt t ( r )  - m(Q2 + p 2 ) R ( r )  

N 

r R ( r ) d r +  [+ + :]R'(O 

+ I + ( L + d Z )  + m2p2Ld N i 2 +  d p G 2 &  N - Q5i2 ( L  + d2) 
2MTL Ci L 

N 1- 2 3 z d L  N 

L 
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R'( 11) 

+ -  

I F ( L + d t )  

- R ' ( L )  p2E& 

El 
m2p2Ldz ( L  + di) + p2C 2odz 

N 

L 2MTi[: 

- 
- L  +[e+- m2p2 + e] F R ( r ) d r  + mp2% El  J r R ( r ) d r  0 = 0 

MT ci 0 

To simplify the algebra we  make two identities, where 

L 
+ J r R ( r ) d r  

El  0 w i  

cw2 = 
R' ( 0) 

m2p2Ld,dZ + p2E2E, 
&(L  +dz)  + N 

c"1 
N 

L 2MTL 

L L 
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2-2 L - L  + [ -  + - m2p2 + &] J R ( r ) d r  + mpZc7 J ' r R ( r ) d r  
N 

MT Ci 0 El 0 

( 54) 

Thus equation (52) may be written 

= o  N EIR (r) - E24Q2Rft(r) - m( Q 2 +  p 2 ) R ( r )  + C r + C w l  w2 

( 55) 

An exact solution to this differential equation is 

R ( r )  = cisinhalr + c2coshair + c3sina2r + c4cosa2r 

I- - 
- . ~ .~ 

E24 Q2 + ,/ c"j4 Q4 + 4EIm( Q 2  + p2) 1 2EI - 
where a i  = - 

1 
2 
.- 

( 57)  

~ 

2EI 
a2 =L-- - 

The constants C 

constants c.  ( j  = I - 4) of the solution by substituting equation ( 56) into 
J 

equations (53 )  and (54) . 

and Cw2 a r e  now expressed in t e rms  of the arbi t rary 
w l  

Carrying out this substitution, w e  obtain 
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where 

- 
N CIL - --C7L2L 1 -  - -mL3L 1 - N N  

2 3 

- d2C1 - LC2 - LC3 
N N N  N N  

- 

L J 

mP2 A3 = - 
N 

L 

- 1 

1 
a1 

1 " - LC7(  coshalL - 1) + 
ai ai 

LcoshaiL - - sinhaiL 

1 
a1 

- -coshaiL + 
N N N  

mP2 A5 = - 
N 

L 

- 
1" 
a2 a2 

--L C7( cosa2L - 1) + sina2L - 
N N N  N N N  

+ (d iCi  + LC2) a2 + (d2Ci + LC3) a2cosa2L - 
1 - 

1 
a2 

1" -LC7sina2L + - - + 
a2 a2 

N N N  

- (d2Ci + LC3) a2sina2L - 
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- 

- (a2  + P2) a 'E23~ i 
2 2  2 

P2C20L - m P L d, + P2Z7 ( E ,  + E3)  
N N N 

L 2MTL Cl 

m2L2 + -  
2MT 

N 
a2 EI2L N + 

L L 

+ p2 E$L2 + mp2 E , L ~  
N 

3c1 i 
mL p2E2,L p2E7L2 (a2 + p2) - - (a2  +p2) - - 1 MT Elm 2z1 

1 
B2 = 

(a2 + PZ) 

N N  c c  
N 2o ( L  + d2) + alm2p2Ldld2 N + alp2- N 

L 2MTL C1 
B3 = ia1p2c 

+ coshalL 1 
- 

a lm2p 2Ld 

L 2MT L 
- - ( L  + dl) a1p2Cz0d2 

N N 

m 2 ( a 2  + p2) 
( L  + dl) + 

alMT 
+ 

E - 
+ 
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;inhalL - - a lm2p2LdZ a,p2C 20d2 ( L  + dl) N N 

L 2MTL 

N N  

a l p 2 ~ B ~ 7  I a la2  c12d2 1 m ~ p 2  E7 
r 

N N N 

C1 L “IC1 

2,- 
c 2 c 7  

N 
+ a2m2p2Ldld2 

N 
+ 

N 

L 2MTL C1 

+ p C ,  

L L a2 El 

2 “2 

N rv 

+ 

+ cosa2L 

i L 2MTL 

N N  

a 2 p 2 ~ 3 ~ 7  + a2Q2 Elzdz mLp2 + - 
N N 

C l  L a2 El 
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I 
B, = 

L 2MTL 

N N 

C1 L 

sina2L 

mp2 Er  mp2 e7 
a; El a; El 

t cosa2L - 

Solving equations (59) and (60) simultaneously, we w r i t e  

and 

where 

N N N N 

= A I C ~  + A 2 ~ 2  + A 3 ~ 3  + A 4 ~ 4  
c W i  
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N B, + BIAq 
B4 = 

B2 

Development of the  Characteristic Determinant 

By making the substitutions fo r  8 = S2t + T( t) and w = q eiPtR( r) 
0 

and substituting 
given by equations (45) through (48) , we have, after algebraic simplification 
and neglecting nonlinear te rms ,  

f rom equation (43) into the boundary condition equations 

R(0 )  = 0 (63)  

R ( L )  = 0 ( 64) 

0 0 

L L 
EIRTf(L) + E5R'(O) + &R'(L) + fi7 . [R(r )dr  + 6 8  J r R ( r ) d r  = 0 

0 0 
(66) 

N N 

The identities Di through D8 are given below as 
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N 

D2 = D5W2 - p2 

N 

D3 = D,W2 - 

I- 

p2 D7 - - [ 3 
D, N = -D5W2 - p2 [-D3 - y] 

The solution for R( r) given in equations (56) , (61) , (62) is 
substituted into equations (63) through (66) to give a set of four simultaneous 
homogeneous equations in the unknown p2, written as 

aZ1c1 + aZ2c2 + a2$3 '+  aZ4c4 = 0 
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a.31~1 + ~ ~ 3 2 ~ 2  + a33c3 + 8 3 4 ~ 4  = 0 

a41cl + a4,c2 + a43c3 + = 0 

from which we obtain an associated characteristic determinant 

D(P2) = ai1 a12 a13 a14 

a21 a22 a23 a24 

a31 a32 a33 a34 

a41 a42 a43 a44 

The elements a of the determinant are defined as 
i j  

LA1 + Bl 
m(Q2 + P2) 

- sinhalL + a21 - 

N N 

LA, + B, a2, = coshalL + 
m(Q2 + P2) 

LX3 + ii3 

m(Q2 + P2) 
a23 = sinazL + 
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LX4 + E4 
m(Q2  + P2) 

- cosa2L + &24 - 

1 N N N  

N D EiL(2D3 - D4L) 
2m( a2 + p2) 

+ D2aicoshaiL + (coshalL - I) + 
ai 

N N  N N 1- ?(LcoshaiL 1 
At(6Di + 6D2 + 3D3L2 - 2D4L3 

6m( Q2 + P2) 

a32 = 

N 

N 

-EIai + D2aisinhaiL + %sinhaiL 
ai 

N N N N  

B2L(2D3 - D4L 
2 m ( a 2  + p2) 

I 
LsinhaiL - -coshatL + - 

ai 
N N  N N N 

Az( 6 Di + 6 D2 + 3 D3L2 - 2 D4L3) 
6m( Q2 + p2) 

+ -  - 
N N N N  

1 N D B3L(2D3 - D4L) + D2a2cosa2L - (cosa2L - I )  + 
a2 2m(Q2 + P2) 

X3( 661 + 662 + 3E3L2 - 2E4L3) 
6m( G2 + p2) 

N 

N 

a2 

a2 

" N N N 

A4( 6 Di + 6 D2 + 3D3L2 - 2D4 L3) + 
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N 

a42 = 

a 4 3  = 

D 
ai 

N N 
- 

EIaf s i n h a i l  + D5ai + DsaicoshaiL + L( coshaiL - 

N N N N  

N N  N N N 

Ai(6D5 + 6D6 + 3D7L2 + ZD,L3) + - 6m(Q2 + P2) 

N 

N 

EIaicoshaiL + D6aisinhaiL + sinhaiL 
ai 1 

N N " 1  
i 1 \ BzL(2D7 + D8L)I + % ( L s i h a i L  - -ccoshaiL + - 

ai ai 
N N  N N N 

A2(6D5 + 6D6 + 3D7L2 + 2D8L3) + 
6m(QL + PL) 

N 

D 
a2 

N N - 
-EIa&ina2L + D5a2 + D6a2cosa2L - -3 (cosa2L - I) 

N N N N  

B3L( 2D7 + D,L) 

N N  N N N 

A3( 6 D5 + 6 D6 + 3D7L2 + 2D8L3) + - 6m(Q2 + p2) 

N 

N 

-EIa:cosa2L - D6a2sina2L + %sinazL 
a 4 4  = r a2 

I N N N 

- 

N 

N N N 

A4( 6D5 + 6 D, + 3D7L2 + 2D8L3) 
6m(QL + PL) 
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The characterist ic determinant has been programmed for  solution 
on the IBM 7094 digital computer. 
are the natural frequencies of the in-plane motion of the space station, with 
associated mode shapes. 
space station design are presented in Appendix C .  

The values of p2 for  which D(p2) = 0 

Numerical resul ts  of this analysis for a particular 

Special Cases for Values of p k  - a* 
In order  to investigate the behavior of the characterist ic determinant 

when p2 takes on negative values of magnitude exceeding Q2, we recognize 
five regions where the general solution obtained in the previous article is not 
valid. Discussion of these regions follows. 

The Case Where p2 is Between p2 = 42' and p2 = - 

this region the governing equation is unchanged from equation (55) , but the 
solution is written more conveniently as 

-2 4 2 
C24Q - 4 E h Q  . Within 

4EIm 

R ( r )  = clsinhalr + c2coshalr + c3sinha3r + c4cosha3r 

cw2 
m(Q2 + PL) 

C r  w l  + -  + m( Q2 + P2) 

where al is given by equation (57) and 

a3 = 
4EIm( Q2 + p2) 

2EI 

1 z 

The previously discussed development procedure ( Development of the Character-  
ist ic Determinant) again leads to a characterist ic determinant valid within 
the stated region. 
in Appendix C .  

Numerical results of the analysis of this case  are presented 
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The Case  Where p2 E 42'. For this case the governing equation becomes 

N 

= o  EIR lv (r) - C2,Q2Rft(r)  + Cwir + C 
w2 

for which the solution is 

c r3 c r2 
w i  

6C,4Q2 2 ~ 2 4 ~ '  

w2 
N 

+ R ( r )  = cisinha4r + c2coshadr + car + c4 + 

1 

where 

Following the previously discussed development procedure we obtain a charac- 
teristic determinant valid fo r  the case  p2 E -a2. Numerical resu l t s  of the 
analysis for this case are presented in Appendix C. 

The Case Where p2 Takes on Negative Values-Larger  then 

p2 = a - 'Img . The governing equation for this region is given 

by equation ( 5 5 ) ,  but the solution will now be writ ten as 
4EIm 

R( r) = clsinha5rsina6r + c2sinha5rcosa6r + c$osha5rsina6r 

cw2 
m(Q2 + P2) 

+ C W i r  

m(Q2 + P2) + c4cosha5rcosa6r + 

1 

4EI 4E I a6 = 
( 74) 
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The previously discussed development procedure leads to a characterist ic 
determinant valid within the stated region. Numerical resul ts  of the analysis 
fo r  this case are presented in Appendix C. 

-2 4 2 

4EIm The Case mere p2 - "Im' . The governing equation €or this case 

is 

for which the solution is 

R ( r )  = cisinha,r + c2cosha7r + c3rsinha7r + c4rcosha7r 

4EICwir 4EICw2 
- - 

c";,n4' E4s24 

Following the development procedure discussed previously , we obtain a 

characterist ic determinant valid for the case p2 

Numerical resul ts  of the analysis for  this case are presented in Appendix C.  

2 
-ei4Q4. - 4EIma 

4EIm 

The - Region Where A1B2 - A2B1 is Identically Zero. This region gives rise to 
a singularity in calculating the value of the characterist ic determinant; there- 
fore,  the simultaneous solution of equations (59) and (60) must  be modified. 
In order  to simplify the discussion of this point of singularity, the physical 
constants of the space station design given in Appendix C are used as an 
example. 
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For the given data A2 E 0. Therefore, the equation AiB2 - A2Bl 0 
becomes AiB2 E 0; and since B f 0, we must have Ai = 0. 
on page 52 we solve for the p2 for  which A, = 0. Thus 

From the definition 

N N  

. -  _ _  - CIL 
~~ 

N N N N N  N N  N N  i N  N i 
CIL - -C7L2L - -mL3L - diCl - d2Cl - LC2 - L C 3  

2 3 

which falls within the region discussed in the solution of equations (67) and (68). 
For  this value of p2 equations (59) and (60) become 

0 = A3Ci + A4C2 + A 5 ~ 3  + A6C4 ( 78) 

and B$1 + B4C2 + B 5 ~ 3  + B6C4 + BiC 
w i  - 

cw2 - B2 ( 79) 

The identity of equation (79) is used with the solution for R( r) of equation 
(67) and substituted into the boundary equations given by equations (63) through 
(66) to obtain four simultaneous equations, written as 

C 
= c  w i  

elici + e12c2 -I- ei3c3 + ei4c4 + e i 5  m ( ~ 2  ~ p2) 

e22c2 + e23c3 
W i  

C 
e24c4 + e25 m ( ~ 2  + p2) 0 

W i  
C 

e3ici  + e32c2 + e33c3 e34C4 + e35 m ( ~ 2  + p2) = o  

= o  c W i  
e4ic1 + e42c2 e43c3 + e44c4 + e45 m ( ~ 2  + p2) 
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. . .... ._ 

and a fifth equation is obtained from equation (78), rewritten as 

e51c1 e52c2 + e53c3 + e54c4 e55 mraT+T = 0 

Thus the characteristic determinant for this case becomes 

e12 

e 2 2  

e32 

e42 

e52 

e13 

e23 

e33 

e43 

e53 

e14 

e 24 

e34 

e44 

e54 

e15 

e25 

e35 

e45 

e55 

where the elements e. .  of the determinant are defined as 
11 
B3 ell = ~ &a2 + P p 2  

+ I  B 
e12 = m G 2  .“Pi, B2 

B5 e13 = -- 
mW2 + P;) B2 

m(  a2 + P;) B2 
+ i  B, 

e14 = 

B, 
B2 e15 = 

B3 
= sinhall  + 

m( a2 + P i )  B2 e21 
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e 2 2  = 

e23 = 

e24 = 

- 
e25 - 

- 
e3i - 

e 32 

B4 
coshalL + 

m( Q2 + P i )  B2 

B5 
sinha4L + 

m( Q2 + Pi1  Bz 

B, 
cosha4L + 

m( Q2 + P i )  332 

L + X  
B2 

w dv 6 63B3L 
Dial + D2alcoshaiL + 

- 

m(Q2 + P i )  B2 
(coshalL - 1) + 

a1 

64B 3L2 i 2m(Q2 + P 2 P 2  S - 

1 N N 

N D3B4L 
EIa: + D2alsinhalL + %sinha1L + 

a1 m ( Q L  + P i )  B2 

- 
D4B4L2 

2m( Q2 + P i )  B2 
1 

a1 ai 
”( LsinhalL - -coshalL + 

N 

m( Q2 + P i )  B2 

D3B5L I N 

N 

+ D2a4cosha4L + (cosha4L - 1) + 
a4 

64B4L2 
2 d Q 2  + P2)B2 S 

(Lcosha4L - -sinha4L 1 
a4 a4 
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r N N 1 
EIai + E2a4sinha4L + sinha4L + =- D B L  

a4 m ( Q  +Ps)B2 

(Lsinha4L - -cosha4L I + 
a4 a4 

e34 = 

e42 

e43 = 

EIa&iinhaiL + E5ai + E 6 a l c o s h a i ~  + L( D coshaiL - I )  
ai 

N N 

1 
a1 

LcoshalL - - sinlialL 
DTB3L + 

m(Q2 + P i )  B2 

- - 
N N 

EIa:coshaiL + E6aisinhaiL + 3 sinhaiL + DYB4L 
ai m ( Q 2  + P i )  B2 

1 N 
- 

D 
a4 

EIa&inha4L + G5a4 + G6a4cosha4L + .'I (cosha4L - I )  

I + Lcosha4L - -sinha4L 
m(Q2 + P p 3 2  a 4  a4 

+ 
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N 

D 
a4 

N 

+ D6a4sinha4L + -%nha4L + 

1 
a4 

Lsinha4L - - cosha4L + 

E L 2  E L 3  B L  (” E L ) ]  + 6 6  +--I-+ A+ 1 D~ + --+ 
2 3 B2 

e53 = A5 

e55 = 0 

The characteristic determinant has been programmed for solution on 
the IBM 7094 digital computer. 
in Appendix C. 

Numerical results of the analysis are presented 

SECTION VI. D ISCUSSION 

The results of this analysis of the f r ee  vibration of a rotating beam- 
connected space station have shown that the motion of the system can be 
considered to be divided into motion in the plane of rotation which is uncoupled 
from the motion of the system in  the plane perpendicular to the plane of 
rotation. 
deflection has been obtained, and a se t  of nonhomogeneous boundary conditions 
representing a fixed-fixed attachment of the beam to the space modules has 

For motion in the plane of rotation an exact solution for the beam 
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been used to give a characterist ic determinant. Computer programs have 
been developed to solve fo r  the zeros  of the characterist ic determinant and to 
calculate the natural modes of vibration of the rotating system. 

An exact solution for  the beam deflection fo r  motion of the system in 
the plane perpendicular to the plane of rotation can be obtained .using s imilar  
methods, but i t  w a s  not included in this study because of the length of the 
algebraic forms  and computer programs. 

A particular space station made up of two manned space modules 
connected by a flexible beam has been studied to provide an example giving 
numerical results of the analysis. 

The natural frequencies and mode shapes fo r  the six lowest modes have 
been calculated f o r  spin ra tes  varying from 0 to 3. 5 rpm. 
rate has been shown to be an increase in the natural frequencies corresponding 
to an ‘lapparentIf increase in beam stiffness due to rotation. 

The effect of the spin 

A s  discussed in Section V ,  analyses have been made to investigate 

The numerical results for  these special cases demonstrate the 
the behavior of the characterist ic determinant when p2 is less than or equal 
to -az. 
existence of two rigid body modes with nonzero frequencies p2 E -a2 and 

2 

p2 2 4  “ - “Irna , respectively. For these frequencies the value of the 4EIm 

characterist ic determinant has been shown to approach zero  as p2 - -a2 and 

+ 0. 
R ( r )  E 0 since the a rb i t ra ry  constants c .  ( j  = I - 4) of the solution must 

vanish in order  to satisfy the boundary condition equations. 

Therefore, for  each of these frequencies we have the rigid body mode 

3 

Frequency sweeps have been conducted for  negative values of p2, and 
no instabilities for  the motion of the rotating system in the plane of the orbit  
have been found. 

George C .  Marshall Space Flight Center 
National Aeronautics and Space Administration 

Huntsville, Alabama, May 20, 1968 
964-18-01-00-62 
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APPENDIX A 
DERIVATION OF THE BEAM ORIENTAT ON VECTORS 

In order to describe the motion of the point on t Le beam, we  identify 
- . - c  d 

an orthogonal set of unit vectors ( e  e , e ) as shown in  Figure 4. We 

define the unit vector from the vector equation 
v y  PlP2 w 

W 

-c 

= d sinpe PIP2 W 
7 x  a- 

PIP2 

+K 

- 
z2 - z1 + d2sin0sin&ina2 - d2sin0cos+cosP2cosa2 

- d2cos0sinP2cosa2 + dlsinOsin+sinal 

- dlsinOcos$cosPIcosal - dlcos0sinPlcosq 1 
y2 - y1 + d2cos0sin+sina2 - dzcosOcos+cosP2cosaz 

+ d2sin0sinP2coscr2 + dlcosOsin+sinal 

- d p s O  cost,!eos P lcosal + dlsin@sinP lcosal 

where the angle p is shown in Figure A - I .  
with itself, w e  obtain the scalar equation 

Taking the dot product of the vector 

( d  sinp) = ( z2 - zl) + (y2  - yl) + d;sin2+sin2cr2 
P1P2 

+ d;cos2+cos2 P2cos2a! 2 + d:sin2 P2cos2cr2 

+ d&in2#sin2al + d;cos2+cos2Plcos2q 

+ d$in2P lcos2al 
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+ 2 ( Y 2  - Y1) 

d2s in0 s inqs ina - d2s in0 cos $cos p $0 sa 2 

- d2cos0s in~2cosa2  + disinOsin$sinal 

- disinOcos$cospIcosai 

dicosOsinpicosal J 
d2cos0 sin$sina2 - d2cos0 cos $cos p2cosa2 

+ d2sinOsinp2cosa2 + dlcosOsin$sinal 1 - diCOSOCOS$COS ~ I C O S C Y ~  

+ dlsinO sin p lcosal L J 
- 2d&in$cos $cos p2sina 2 ~ ~ ~ a Z  + 2dld2sin2$sina p i n a 2  

- 2dld2sin$cos$cos plcosa @na2 

- 2 d l d 2 s i n ~ c o s ~ o s  p2sinalcosa2 

+ 2d~d~cos2$cos  p l c o ~  2cosa lcosa2 

+ 2dld2sin p isin p 2cosa lcosa 

- 2d$inqcos $cos plsinalcosal 

FIGURE A-1. T H E  ANGLE p B E T W E E N  AND 'I' 
PlPZ 
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We now identify the angles h ( k  = 1, 2 ,  3) which the vector s2 k 
makes with the inertia space axes shown i n  Figure A-2a. 
see that 

From Figure A-2b we 

n 
hi = - + q  2 .  

and 

h2 8 when JI is assumed to be a small angle. 

From the sum of the direction cosines w e  have, neglecting higher order terms, 

7r 
A3 = - - e .  

2 

4 

K I 
0.  4 J’ b. 

I 

FIGURE A-2. ORIENTATION OF &2 IN INERTIA SPACE 
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Taking the dot product of &2 with each of the inertia axes, w e  w r i t e  

4 4 

dI2 K = dl2cosh3 = z2 - zi di2sinQ 

Substituting these identities into the equation for  ( d  sinp)2,  we  have 
p1p2 

( d  . sinp) = di2 + d;z,b2sin2a2 + d;cos2a!2 + d:$2sin2a!l + dicos2al 
PIP2 

- 2di $cos P 2sina! 2cosa! + 2d1d2 $25 ina! ls ina 

- 2d1d2 $cos P l c o s ~  lsina - 2d1d2 $cos Pzsina! lcosa! 2 

+ 2dld2cosa lcosa2cos(~l  - p2)  - Bdi$cos Plsinalcosa!l 
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We a s s u e  ai ,  a2, p i ,  p~ are small  angles and neglect higher order  terms 
to obtain 

(d  sinp) N d212 + di + d; - 2dizd2 - 2d12d1 + 2d1d2 = (diz - dl - d2) 2 
PIP2 

Thus d sinp = (di2 - di - d2) = L for  small deflection theory. 

that a s imilar  procedure can be used to show that d = d2 = L2 
for  small  deflection theory. 

We note 
PIP2 -c 

PIP2 PIP2 PIP2 

+ 4 

The equations for  e and e 
W PIP2 

may now be written as 

1 J 4 

e = -  p2 - z1 + d2sin6sin$sina2 - d 2 s i n O c o s $ c o s ~ ~ ~ ~ ~ a ~  
W 

J - d2cos6sinp2cosa2 + disinOsin$sinal 

- dlsinOcos$cos plcosal  - dlcos6sin plcosal 1 
y2 - y1 + d2cos6sin$sina2 - d 2 c o s 8 c o s $ c o s ~ ~ c o s a ~  

+ d2sin0sinPzcosa2 + dlcos6sin$sinai 

- dlcose cos $cos plcosal + dlsine s inpicosa 1 L 

4 

-r 
- x2 - xi + d2cos$sina2 + d2sin$cosp2cosa2 

+ dlcos$sinai + disin$cospIcosal 
e PIP2 - " [  

1 - y1 + d2cos0sin$sina2 - d2cos6cos$cosp2cosa2 

d2sin0 s inp  2 c o s ~ 2  + dlcos6 sinqsina 

- d lcose cos $cos plcosa + disin6 s inplcosa 
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+ - z2 - z1 + dzs in~s in$s ina2  - d z s i n 0 c o s $ c o s ~ ~ c o s a 2  “c L 1 
I I - d2cosOsinp2cosa~ + dlsinOsin$sinal 

From the orthogonality of the unit vectors  it can be shown by algebraic 
manipulation that the third vector of the t r iad is given by 

-L. 4 

e = I  
V I 

4 

J 
-F 

-’I 

x2 - xi + d2cos$sina2 + d2sin+cosp2cosa2 

+ dlcos+sinal  + dlsinz)cospicosal 1 i 
2 

y2 - y1 + d2cos8sin+sina2 - d 2 c o s 9 c o s ~ c o s ~ ~ c o s a ~  

+ d2sin8sinp zc0sa2 + dlcos0sin+sinal l i  - dlcos8cos+cosplcosal + dlsinOsinplcosal 

- 
x2 - xl + d2cos+sina2 + d2sin+cosp2cosa2 

+ dicos+sinal  + dlsin$cosPlcosal  

l i  
1 - 

z2 - z1 +d2~inOsin+sina!2 - d 2 s i n O c o s + c o s ~ ~ c o s a ~  r 
- d2cos8sinp2cosa2 + dlsinOsin+sinal 

- dlsinOcos$cos p lcosayl - dicos9sinp icosa l  
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APPENDIX B 
DERIVATION OF THE BOUNDARY CONDITIONS 

The relationship between the slope of the beam at the end points and 
the rotation angles of the respective stages is established for the fixed-fixed 
boundary conditions by the following derivation: 

- 4  ‘-t 

The orthogonal set of unit vectors e e , e has  been described 
v’ PlP2 w 

in Appendix A.  From Figure B-I we identify the angles 1-1 

by the vector e2 with e e , e respectively, where 

> P, Y Pw made 
I 1 I V 

-L 4 ‘A 4 

v’ PlPZ w I 

1 x2 - x1 + d2cos+sina2 + dzsinZ,bcosP2cosa2 

+ dlcos+sinal + dlsin+cosPlcosal 
-+[ 

( Y 2  - Y l )  

- 
- sinOsin+sinal + cosesinpicosal 

sinecos +cos p lcosa l  
- 

- d2sin2+sinalsina2 + d2sinZ,bcos+cos p2sinalcosa2 

- dlsin2+sin2al + dlsin+cos+cosPlsinalcosal 

77 

1.111 I a.  - I I  11.11. I. 



L - sinesinplcosal  J 

L + cosesinplcosal J 

- s i n ~ s i n + s i n a ~  + cosOsinPlcosai 

+ sine cos +cos Picosal  1 L 
4 4 e e = COSp - 

I W W 
21 
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+ sin+ (sinpicosalsina2 - sinp2sinalcosa2) 
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L P r o j e c t i o n  of ;& in the 

Plane of e p  I 2  and e" 

- FIGURE B-I. ORIENTATION OF WITH THE TRIAD < , Z , e 
1 PIP2 w 

Using small deflection theory and neglecting higher order terms, we write 

cosp = -a1 (1 + +) 2)  1 V 

cosp N 1 
1 

r 

cosp = P l ( l  + 2 )  + P 2 ( 3  
1 W 
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Now the angle pvr 

e e is related to v, 0, t) with the equation 

made by the projection of on the plane formed by 
1 

- 4  

vy  PIP2 

so V,l(O,t) = -a1 (1++) - a!2(+) 

and similarly w e  have for  the other end of the beam 

V, i (L , t )  = -a2 (1 ++) - a!l(+) 

Also the angle 1.1 

e , e is related to w,  0, t) with the equation 

made by the projection of on the plane formed by 
1 2i w r  

.-) - 
PIP2 w 
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and similarly for the other end of the beam 

From the equations for  w, 0, t) and w, L, t) we solve for P i  
and P2,  written as 

and from the equations for v, 0, t) and v, L, t) w e  wr i te  



APPENDIX C 
NUMERICAL RESULTS OF THE ANALYSIS 

- _ _  
~ 

Component Mass Principal Momenta of Inertia 

(slug - f t2)  

W g e  1 M = 1 5 5 2 . 8 s l u g s  ( I A ) , = 9 ( l O 5 )  (IA)z= l(l0’) ( I A ) 3 = 9 ( 1 0 5 )  
A 

Wge 2 M = 1552.8 slugs (IB) 1 = 9(105F (IB) 2 = l (  ios) (IB)3 = 9( 10’) 
B 

_ _ - - -  _ - _ - -  ----- Beam m = . I242 Shg/ft  

L 

The Basic Solution 

Associated 

Distance 

d , = & f t  

d2 = 46 ft 

L = 41 ft 

A program has been written in Fortran IV for the IBM 7094 digital 
computer to solve for the zeros of the characteristic determinant described 
in Section V. 
frequency sweep for incremental values of p2. When the value of the 
determinant changes sign, the increment is progressively decreased to 
converge to the value of p2 for which D(p2) = 0. This value of p2 is listed 
as p! ( j  = 1 , 2, . . . N) , the jth natural frequency of the system, and an 

3 
associated eigenvector representing the mode shape of the jth mode is 
calculated. A subroutine is then used to calculate the value of R . ( r )  for 

incremental values of r from 0 to L, and the results are plotted to give the 
jth mode shape of the beam. 

This program utilizes an iteration procedure to conduct a 

J 

The data given in Table C-1 are used for input data to the computer 
program. These data represent two manned space modules launched by 
Saturn-type launch vehicles and then connected by a flexible tunnel. The 
tunnel is 4 feet in diameter with thin wall  construction of a steel wire grid 
sealed with a soft polymer membrane. The grid provides bending stiffness 
and astronaut protective structure while the membrane serves as a micro- 
meteorite shield and as closure for a shirt-sleeve atmosphere. 

TABLE C-I. PHYSICAL CONSTANTS O F  THE SPACE STATION 

E1 

(lb - ft2] 

82 



r 

A spin rate Cl varying from 0 to 3 . 5  rpm has been studied. 
maximum Cl of 3 . 5  rpm is such that the gravity level is approximately 
0. I g at the tunnel end (approximately 0.3 g in the c r e w  quar te rs ) .  
spin rate the natural frequencies of the six lowest modes are tabulated in 
Table C-II. Mode shapes for  these frequencies a r e  shown in Figures C-1 through 
C-6. The effect of the spin rate is seen to  be a slight increase in the natural 
frequencies corresponding to an "apparent" increase in stiffness of the beam 
due to rotation (see Hurty and Rubenstein [ 121 ) . 

The- 

For each 

In addition, the value of the characterist ic determinant has  been 
shown to approach zero  as p2 approaches 4'. Since the basic solution 
is not valid for  values of p2 5 -Q2 due to changes in the governing equation 
or the solution, as discussed in Section V, we consider the special cases  in 
the following sections. 

E2ta4 - ~ E I ~ Q *  
p2 Between p2 = -a2 and p2 = 

4EI m 
A s  shown in Section V, the solution is given by equation ( 6 7 ) .  The 

characterist ic determinant for  this solution has been programmed, and a 
frequency sweep for  incremental values of p2 within this region has been 
conducted. The results indicate that D(p2) - 0 at both end points and that 
there are no values of p2 within this region for  which D(p2) = 0. 
a singularity exists within this region, as discussed in Section V, page 63. 
The value of D(p2) becomes large on both s ides  of this singularity, which 
is evaluated in the last half of this Appendix. 

However, 

A s  shown in Section V, page 62, the governing equation and solution 
are given by equations (69)  and (70) when p2 
determinant for this case has been programmed and the value of D(p2 = -Q2) 
found to be nonzero. However, the numerical resul ts  obtained from the basic 
solution and the numerical results of the analysis for  the special case of p2 

-2 4 2 

indicate that there is a natural mode at 
4EIm between -Q2 and 

p2 = -a2. -a2) f 0, we  must have R ( r )  E 0 for  all r, 

-a2. The characterist ic 

-C.& -4EImCl 

Therefore, since D(p2 
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M c TABLl3 C-II. NATURAL FREQUENCIES OF THE SYSTEM 



0 10 20 30 40 50 
Stotion 

FIGURE C-I.  NORMALIZED MODE SHAPE CORRESPONDING TO FIRST 
NATURAL FREQUENCY OF THE ROTATING SYSTEM 

FIGURE C-2. NORMALIZED MODE SHAPE CORRESPONDING TO SECOND 
NATURAL FREQUENCY OF THE ROTATING SYSTEM 
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FIGURE C-3. NORMALIZED MODE SHAPE CORRESPONDING TO THIRD 
NATURAL FREQUENCY OF THE ROTATING SYSTEM 

A 

FIGURE C-4. NORMALIZED MODE SHAPE CORRESPONDING TO FOURTH 
NATURAL FREQUENCY OF THE ROTATING SYSTEM 
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Station + 
FIGURE C-5. NORMALIZED MODE SHAPE CORRESPONDING TO FIFTH 

NATURAL FREQUENCY OF THE ROTATING SYSTEM 

J 
I n  
I I \  
I I \  
I i \7 
/ I \  I! 

FIGURE C-6. NORMALIZED MODE SHAPE CORRESPONDING TO SIXTH 
NATURAL FREQUENCY O F  THE ROTATING SYSTEM 
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which is the rigid body mode with associated frequency p2 
that the rigid body frequency is not the usual p2 = 0 for  a nonrotating body, 
but ra ther  a finite number equal to the negative spin rate. 

-8'. Thus we find 

- - 4 E l m i 1 2  
p2 With Negative Values Larger than p2 = - 

4E h 
A s  shown in Section V, page 62, the solution for  p2 within this region 

The characterist ic determinant for  this region has is given by equation (72 ) .  
Geen programmed, and a frequency sweep fo r  incremental values of p2 has 

been conducted. The resul ts  indicate that D(p2) - 0 as p2 - 
and that there are no values of p2 within this region for  which 

-C?AQ "2 4 - 4 E h Q  2 

4 G m  

D(p2) = 0. 

4E I m  IJ - -  

The governing equation and solution for  this point are given by equations 
The characterist ic determinant fo r  this case has been (75) and (76 ) .  

-2 4 
-"" - found to be nonzero. 4EIm programmed and the value of D 

However, the numerical resul ts  ih the second and fourth sections of this Appendix 

indicate that there is a natural mode at p2 E 

-2  4 

4 E h  
"2 4 &) f 0, we must have R ( r )  E 0 f o r  all r. Thus we have 

4EIm 
-c"LQ4 - 4EIm8' as in 

4EIm 
another rigid body mode with associated frequency p2 f 
the third section of this Appendix. 

The Singularity Where A1B2 - A2B1 E O  

A s  shown in Section V, page 6 3 ,  a singularity exists in the calculation 
of the characterist ic determinant. A computer program has been written to 
study this singularity, and the results indicate that D(p2)  f 0. Thus, eince 

the numerical resu l t s  of the analysis in the neighborhood of the singularity do 
not indicate a natural mode at the singularity, we conclude that p2 is not a 
natural frequency of the system. 

S 

S 
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